Day-Ahead Wind Power Forecasting Based on Wind Load Data Using Hybrid Optimization Algorithm

نویسندگان

چکیده

Accurate wind power forecasting is essential to reduce the negative impact of on operation grid and cost system. Day-ahead plays an important role in day-ahead electricity spot trading market. However, instability series makes forecast difficult. To improve accuracy, a hybrid optimization algorithm established this study, which combines variational mode decomposition (VMD), maximum relevance & minimum redundancy (mRMR), long short-term memory neural network (LSTM), firefly (FA) together. Firstly, original historical sequence decomposed into several characteristic model functions with VMD. Then, mRMR applied obtain best feature set by analyzing correlation between each component. Finally, FA used optimize various parameters LSTM. Adding results all sub-sequences acquires result. It turns out that proposed superior other six comparison algorithms. At same time, additional case provided further verify adaptability stability model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wind Power and Electric Load Forecasting

As renewable energy increasingly integrates into the electric power system, electric load forecasting and renewable energy power generation forecasting become more important. In this project, ARIMA and NARX are applied to build load forecasting model focusing on improving statistical and computational efficiency without losing accuracy. ARIMA turns out to be better for short term forecasting wh...

متن کامل

Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method

High penetration of wind power in the electricity system provides many challenges to power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help power system operators reduce the risk of an unreliable electricity supply. This paper propo...

متن کامل

Wind Power Forecasting Using Ensembles

Short-term prediction of wind energy is by now an established field of wind power technology. For the last 15 years, our groups have worked in the field and developed short-term prediction models being used operatively at the major Danish utilities since 1996. The next step in the development of the models is to use ensemble forecasts. The ensembles are produced routinely at US NCEP (National C...

متن کامل

Grid Power Optimization Based on Adapting Load Forecasting and Weather Forecasting for System Which Involves Wind Power Systems

This paper describes the performance, generated power flow distribution and redistribution for each power plant on the grid based on adapting load and weather forecasting data. Both load forecasting and weather forecasting are used for collecting predicting data which are required for optimizing the performance of the grid. The stability of each power systems on the grid highly affected by load...

متن کامل

Optimal power flow based on gray wolf optimization algorithm using probability density functions extraction considering wind power uncertainty

In recent years, utilization of the renewable based power plants has become widespread in the power systems. One of the most widely used renewable based power plants is wind power plants. Due to the utilization of wind energy to generate electricity, wind turbines have not emitted any environmental pollution. Thus, in addition to economic benefits, utilization of these power plants is of great ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainability

سال: 2021

ISSN: ['2071-1050']

DOI: https://doi.org/10.3390/su13031164